fr|en

cosinus

Calcul cos

Calcul en cours ... merci de patientez
Partager avec Facebook Partager avec Twitter Partager avec Google+ Partager par Mail
Partager+

Fonction : cos

Résumé :

La fonction trigonométrique cos permet le calcul du cosinus d'un angle exprimé en radians, degrés, ou grades.

Cos en ligne

Description :

Fonction cosinus

Le calculateur permet d'utiliser la plupart des fonctions trigonométriques, il est ainsi possible de calculer le cosinus, le sinus et la tangente d'un angle grâce aux fonctions du même nom.

La fonction trigonométrique cosinus notée cos, permet de calculer le cosinus en ligne d'un angle, il est possible d'utiliser différentes unités angulaires : le radian qui est l'unité angulaire par défaut, le degré ou le grade.

  1. Calcul du cosinus
  2. Calcul du cosinus d'un angle exprimé en radians

    La calculatrice de cosinus permet grâce à la fonction cos de calculer en ligne le cosinus d'un angle en radians, il faut commencer par selectionner l'unité souhaitée en cliquant sur le bouton options du module calcul. Une fois cette action réalisée, vous pouvez commencer vos calculs.

    Ainsi pour le calcul du cosinus en ligne de `pi/6`, il faut saisir cos(pi/6), après calcul, le résultat `sqrt(3)/2` est renvoyé.

    On note que la fonction cosinus est en mesure de reconnaitre certains angles remarquables et de faire les calculs avec les valeurs remarquables associées sous forme exacte.

    Calculer le cosinus d'un angle exprimé en degrés

    Pour calculer le cosinus d'un angle en degrés, il faut commencer par selectionner l'unité souhaitée en cliquant sur le bouton options du module calcul. Une fois cette action réalisée, vous pouvez commencez vos calculs

    Ainsi pour calculer le cosinus de 90, il faut saisir cos(90), après calcul, le résultat 0 est renvoyé.

    Calculer en ligne cosinus d'un angle exprimé en grades

    Pour calculer le cosinus d'un angle en grades, il faut commencer par selectionner l'unité souhaitée en cliquant sur le bouton options du module calcul. Une fois cette action réalisée, vous pouvez commencez vos calculs.

    Ainsi le calcul du cosinus de 50, s'obtient en saisissant cos(50), après calcul, le résultat `sqrt(2)/2` est renvoyé.

    On note que la fonction cosinus est en mesure de reconnaitre certains angles remarquables et de faire les calculs avec les valeurs remarquables associées sous forme exacte.

  3. Valeurs remarquables du cosinus
  4. Le cosinus admet quelques valeurs remarquables que le calculateur est en mesure de déterminer sous formes exactes. Voici la liste des valeurs remarquables du cosinus les plus communes :

    • `cos(0)=1`
    • `cos(pi/6)=sqrt(3)/2`
    • `cos(pi/4)=sqrt(2)/2`
    • `cos(pi/3)=1/2`
    • `cos(pi/2)=0`
    • `cos(2*pi/3)=-1/2`
    • `cos(3*pi/4)=-sqrt(2)/2`
    • `cos(5*pi/6)=-sqrt(3)/2`
    • `cos(pi)=-1`

  5. Dérivée du cosinus
  6. La dérivée du cosinus est égale à -sin(x).

  7. Primitive du cosinus
  8. Une primitive du cosinus est égale à sin(x).

  9. Parité de la fonction cosinus
  10. La fonction cosinus est une fonction paire autrement dit, pour tout réel x, cos(-x)=cos(x). La conséquence pour la courbe représentative de la fonction cosinus est qu'elle admet l'axe des ordonnées comme axe de symétrie.

  11. Les formules d'additions
  12. Il est possible de calculer le cosinus de la somme ou de de la différence de deux nombres à partir du cosinus et du sinus de chacun de ces nombres. Autrement dit on a les formules d'addition suivantes quels que soient les réels a et b:

    • cos(a-b)=cos(a)*cos(b)+sin(a)*sin(b)
    • cos(a+b)=cos(a)*cos(b)-sin(a)*sin(b)
    • sin(a-b)=sin(a)*cos(b)-cos(a)*sin(b)
    • sin(a+b)=sin(a)*cos(b)+cos(a)*sin(b)

    Le calculateur permet d'utiliser ces propriétés pour calculer des développements trigonométriques.

  13. Les formules de duplication
  14. En remplaçant b par a dans les formules d'addtion, il est possible d'obtenir les formules de duplication suivantes :

    • `cos(2a)=(cos(a))^2-(sin(a))^2`
    • `sin(2a)=2*sin(a)*cos(a)`

  15. Les formules de linéarisation
  16. Les formules de linéarisation suivantes se déduisent des formules de duplication :

    • `(cos(a))^2=(1+cos(2a))/2`
    • `(sin(a))^2=(1-cos(2a))/2`

    Toutes ces formules trigonométriques jouent un rôle important dans la résolution des problèmes d'analyse.

  17. Équation avec cosinus
  18. Le calculateur dispose d'un solveur qui lui permet de résoudre une équation avec un cosinus de la forme cos(x)=a. Les calculs permettant d'obtenir le résultat sont détaillés, ainsi il sera possible de résoudre des équations comme `cos(x)=1/2` ou `2*cos(x)=sqrt(2)` avec les étapes de calcul.


La fonction trigonométrique cos permet le calcul du cosinus d'un angle exprimé en radians, degrés, ou grades.


Syntaxe :

cos(x), où x représente la mesure d'un angle exprimé en degrés, radians, ou grades.


Exemples :

cos(0), renvoie 1


Dérivée cosinus :

Pour dériver une fonction cosinus en ligne, il est possible d'utiliser le calculateur de dérivée qui permet le calcul de la dérivée de la fonction cosinus

La dérivée de cos(x) est deriver(cos(x))=`-sin(x)`


Primitive cosinus :

Le calculateur de primitive permet le calcul d'une primitive de la fonction cosinus.

Une primitive de cos(x) est integrer(cos(x))=`sin(x)`


Limite cosinus :

Le calculateur de limite permet le calcul des limites de la fonction cosinus.

La limite de cos(x) est limite(cos(x))


Fonction réciproque cosinus :

La fonction réciproque de cosinus est la fonction arc cosinus notée arccos.



Représentation graphique cosinus :

Le traceur de fonction en ligne est en mesure de tracer la fonction cosinus sur son intervalle de définition.



Parité de la fonction cosinus :

La fonction cosinus est une fonction paire.
Calculer en ligne avec cos (cosinus)
Voir aussi :
  • Arc cosinus : arccos. La fonction arccos permet le calcul de l'arc cosinus d'un nombre. L'arc cosinus est la fonction réciproque de la fonction cosinus.
  • Arc sinus : arcsin. La fonction arcsin permet le calcul de l'arc sinus d'un nombre. L'arc sinus est la fonction réciproque de la fonction sinus.
  • Arc tangente : arctan. La fonction arctan permet le calcul de l'arc tangente d'un nombre. L'arc tangente est la fonction réciproque de la fonction tangente.
  • Calculateur trigonométrique : calcul_trigonometrique. Calculatrice qui permet de simplifier une expression trigonométrique.
  • Cosinus : cos. La fonction trigonométrique cos permet le calcul du cosinus d'un angle exprimé en radians, degrés, ou grades.
  • Cotangente : cotan. La fonction trigonométrique cotan permet de calculer la cotangente d'un angle exprimé en radians, degrés, ou grades.
  • Développement trigonométrique : developpement_trigo. Le calculateur permet d'obtenir le développement trignomométrique d'une expression.
  • Réduire une expression algébrique en ligne : reduire. Calculatrice qui permet de simplifier une expression algébrique en ligne.
  • Sinus : sin. La fonction trigonométrique sin permet de calculer le sinus d'un angle exprimé en radians, degrés, ou grades.
  • Tangente : tan. La fonction trigonométrique tan permet de calculer la tangente d'un angle exprimé en radians, degrés, ou grades.