Suites numériques : Mémento

On appelle suite numérique toute application de `NN` ou d'une partie de `NN` vers `RR`.

Sens de variation d'une suite : Suite strictement croissante, suite strictement décroissante

Pour montrer qu'une suite est croissante ou décroissante :

Suites arithmétiques, suites géométriques

Suites arithmétiques

Dire qu'une suite (`u_(n)`) est arithmétique signifie qu'il existe un réel r tel que pour tout naturel n, `u_(n+1)`=`u_(n)`+r. Le réel r est appelé la raison de la suite (`u_(n)`).
Si (`u_(n)`) est une suite arithmétique de premier terme `u_(0)`, et de raison r. Alors pour tout naturel n, `u_(n)=u_(0)+nr`

Somme de terme consécutifs d'une suite arithmétique

Si S=a+...+k est la somme de p termes consécutifs d'une suite arithmétique alors `S = p(a+k)/2`. On en déduit que `1+2+3+...+n=n(n+1)/2`

Suites géométriques

Dire qu'une suite (`u_(n)`) est géométrique signifie qu'il existe un réel q tel que pour tout naturel n, `u_(n+1)`=`qu_(n)`. Le réel q est appelé la raison de la suite (`u_(n)`).
Si (`u_(n)`) est une suite géométrique de premier terme `u_(0)`, et de raison q. Alors pour tout naturel n, `u_(n)=u_(0)*q^n`

Somme de terme consécutifs d'une suite géométrique

Si S=a+...+k est la somme de p termes consécutifs d'une suite géométrique de raison q (`q != 1`) alors `S = (a-k*q)/(1-q)`.
On en déduit que `1+q+q^2+...+q^n=(1-q^(n+1))/(1-q)`