Hier finden Sie eine Liste von Mathematikübungen für die Oberstufe, die online kostenlos zur Verfügung stehen. Jede korrigierte Übung wird von Hinweisen, Kurswiederholungen und methodischen Ratschlägen begleitet, was ein selbstständiges Üben ermöglicht.
33 ÜbungenBeispielübung N°1620 :
Sei die Folge (`u_(n)`) definiert durch `u_(n)` = `(2+n)/(2+5*n)`.
Darstellen Sie die Terme von `u_(n+3)` in Abhängigkeit von n.
Zahlenfolgen 11 Klasse 12 Klasse
Das Ziel dieser Übung zu Zahlenfolgen ist es, einen Term der Folge in algebraischer Form zu schreiben.
Beispielübung N°1621 :
Sei die Folge (`u_(n)`), definiert durch `u_(n)` = `-3-3*n`.
Darstellen Sie die Terme von `u_(n+1)` in Abhängigkeit von n.
Zahlenfolgen 11 Klasse 12 Klasse
Das Ziel dieser Übung zu Zahlenfolgen ist es, einen Term der Folge in algebraischer Form zu schreiben.
Beispielübung N°1622 :
Sei die Folge (`u_(n)`), die für jedes natürliche n durch `u_(0)= 3 ` und `u_(n+1)` = `-3+u_(n)` definiert ist.
Ist diese Folge steigend oder fallend?
Zahlenfolgen 11 Klasse 12 Klasse
Übung zum Variationssinn einer einfachen Zahlenfolge: konstante Folgen, steigende Folgen und fallende Folgen.
Beispielübung N°1623 :
Sei die Folge (`u_(n)`), die für jedes natürliche n durch `u_(0)= 4 ` und `u_(n+1)` = `u_(n)/5` definiert ist.
Ist diese Folge steigend oder fallend?
Zahlenfolgen 11 Klasse 12 Klasse
Übung zum Variationssinn einer numerischen Folge mit einem Bruch: Konstante Folgen, steigende Folgen und fallende Folgen.
Beispielübung N°1624 :
Sei die Folge (`u_(n)`), die für jedes natürliche n definiert ist durch `u_(0)= -3 ` und `u_(n+1)` = `-7+u_(n)`.
1. Ist (`u_(n)`) eine arithmetische oder geometrische Folge?
2. Wie lautet der Grund von (`u_(n)`)
3. Geben Sie den Ausdruck von `u_(n)` in Abhängigkeit von n an.
Zahlenfolgen 11 Klasse 12 Klasse
Das Ziel dieser korrigierten Übung ist es, die Stammfunktion einer Funktion zu berechnen.
Beispielübung N°1625 :
Sei die Folge (`u_(n)`), die für jedes natürliche n definiert ist durch `u_(0)= -1 ` und `u_(n+1)` = `-9*u_(n)`.
1. Ist (`u_(n)`) eine arithmetische oder geometrische Folge?
2. Wie lautet der Grund von (`u_(n)`).
3. Geben Sie den Ausdruck von `u_(n)` in Abhängigkeit von n an.
Zahlenfolgen 11 Klasse 12 Klasse
Übung zu geometrischen Folgen, arithmetischen Folgen und deren Gründen.
Beispielübung N°1626 :
Sei (`u_(n)`) eine arithmetische Folge mit der Differenz -6 und dem ersten Term `u_(0)= 1 `.
1. Geben Sie den Ausdruck von `u_(n)` in Abhängigkeit von n an.
2. Berechnen Sie `u_(3)`.
Zahlenfolgen 11 Klasse 12 Klasse
Diese Übung übt die Berechnung der Terme einer arithmetischen Folge, ausgehend von ihrem Differenz und ihrem ersten Term.
Beispielübung N°1627 :
Zahlenfolgen 11 Klasse 12 Klasse
Diese Übung übt die Berechnung der Terme einer geometrischen Folge, ausgehend von ihrem Quotient und ihrem ersten Term.
Beispielübung N°1628 :
Zahlenfolgen 11 Klasse 12 Klasse
Diese Übung übt, die Summe der Terme einer arithmetischen Folge aus dem Differenz und dem ersten Term zu berechnen.
Beispielübung N°1629 :
Zahlenfolgen 11 Klasse 12 Klasse
Diese Übung übt, die Summe der Glieder einer arithmetischen Folge zu berechnen.
Beispielübung N°1630 :
Zahlenfolgen 11 Klasse 12 Klasse
Diese Übung übt, die Summe der Terme einer geometrischen Folge aus ihrem Quotient und ihrem ersten Term zu berechnen.
Beispielübung N°1634 :
Berechnen Sie die Wurzeln von P(x) =`-4+8*x+3*x^2-x^3`.
Polynomfunktionen algebraische Berechnung 11 Klasse 12 Klasse gleichungsrechner
Das Ziel dieser Übung zur algebraischen Berechnung ist es, die Werte zu bestimmen, bei denen ein Polynom vom Grad 3 gleich 0 ist.
Beispielübung N°1701 :
Schreiben Sie die komplexe Zahl Z = `(-4-5*i)/(2+3*i)` in algebraischer Form
komplexe Zahlen 12 Klasse komplexe_zahl
Das Ziel dieser korrigierten Übung ist es, eine komplexe Zahl in ihrer algebraischen Form z=a+ib zu schreiben.
Beispielübung N°1702 :
Berechnen Sie den Realteil der komplexen Zahl Z = `(2-4*i)/(1+2*i)`
komplexe Zahlen 12 Klasse realteil
Um diese Übung zu bestehen, müssen Sie den Realteil eines komplexen Ausdrucks bestimmen können.
Beispielübung N°1703 :
Berechnen Sie den Imaginärteil der komplexen Zahl Z = `(1-3*i)/(5+i)`.
komplexe Zahlen 12 Klasse imaginarteil
Das Ziel dieser Übung ist es, den Imaginärteil einer komplexen Zahl zu berechnen.
Beispielübung N°1704 :
Berechnen Sie die Konjugierte der komplexen Zahl Z = `(5-2*i)/(1+i)`.
komplexe Zahlen 12 Klasse konjugiert
In dieser Übung werden die Techniken zur Berechnung der Konjugierten einer komplexen Zahl angewendet.
Beispielübung N°1705 :
z = `-3+2i`
z' = `5-4i`
Berechnen von `z*z'`.
komplexe Zahlen 12 Klasse komplexe_zahl
Ziel dieser Übung ist es, das Ergebnis von arithmetischen Operationen (Summe, Differenz, Produkt) zu finden, die komplexe Zahlen betreffen.
Beispielübung N°1706 :
Berechnen Sie den Imaginärteil der komplexen Zahl, Z = `-3+2*i`
komplexe Zahlen 12 Klasse imaginarteil
Das Ziel dieser Übung ist es, den Imaginärteil einer komplexen Zahl aus ihrer algebraischen Form zu ermitteln.
Beispielübung N°1707 :
Berechnen Sie den Realteil der komplexen Zahl, Z = `-5+7*i`
komplexe Zahlen 12 Klasse realteil
Das Ziel dieser Übung ist es, den Realteil einer komplexen Zahl aus ihrer algebraischen Form zu ermitteln.
Beispielübung N°1708 :
Stellen Sie den Punkt mit der Affixe `4+5i` in der komplexen Ebene dar`
komplexe Zahlen 12 Klasse
Das Ziel dieser grafischen Übung ist es, die Affixe einer komplexen Zahl in der Ebene zu platzieren.
Beispielübung N°1709 :
Drücke ln(25) als Funktion von ln(5) aus.
Neperischer Logarithmus Funktionen 12 Klasse
Das Ziel dieser korrigierten Übung ist es, einen neperischen Logarithmus zu vereinfachen, der eine Potenz enthält.
Beispielübung N°1710 :
Drücke `ln(1/27)` als Funktion von ln(3) aus
Neperischer Logarithmus Funktionen 12 Klasse
Das Ziel dieser korrigierten Übung ist es, einen neperischen Logarithmus zu vereinfachen, der einen Quotienten enthält.
Beispielübung N°1711 :
Drücke `-3/8*ln(1/(27))` als Funktion von ln(3) aus
Neperischer Logarithmus Funktionen 12 Klasse
Das Ziel dieser korrigierten Übung ist es, das Produkt aus einem Bruch und einem neperischen Logarithmus, der einen Quotienten enthält, zu vereinfachen.
Beispielübung N°1712 :
Drücke `-5/8*ln(sqrt(2))` als Funktion von ln(2) aus
Neperischer Logarithmus Funktionen 12 Klasse
Das Ziel dieser korrigierten Übung ist es, den Nephronischen Logarithmus einer Quadratwurzel zu vereinfachen.
Beispielübung N°1713 :
Berechnen Sie eine Stammfunktion der Funktion `f(x)=7/(9+7*x)` auf `RR^+`.
Neperischer Logarithmus Stammfunktionen Funktionen 12 Klasse stammfunktion
Das Ziel dieser korrigierten Übung ist es, den Neperianischen Logarithmus zur Berechnung eines Stammfunktion eines rationalen Bruchs ersten Grades zu verwenden.
Beispielübung N°1714 :
Berechnen Sie eine Stammfunktion der Funktion `f(x)=(8*x)/(1+4*x^2)` auf `RR^+`.
Neperischer Logarithmus Stammfunktionen Funktionen 12 Klasse stammfunktion
Das Ziel dieser korrigierten Übung ist es, den Nephronischen Logarithmus zur Berechnung der Stammfunktionen eines rationalen Bruchs 2. Grades zu verwenden.
Beispielübung N°1715 :
Berechnen Sie die Ableitung der Funktion `ln(x)^5`
Neperischer Logarithmus Ableitungen von Funktionen Funktionen 12 Klasse ableitungsrechner
Das Ziel dieser korrigierten Übung ist es, den Nephronischen Logarithmus für die Berechnung der Ableitung zu verwenden.
Beispielübung N°1716 :
Berechnen Sie die Ableitung der Funktion `ln(9+9*x^2)`
Neperischer Logarithmus Ableitungen von Funktionen Funktionen 12 Klasse ableitungsrechner
Das Ziel dieser korrigierten Übung ist es, den Nephronischen Logarithmus für die Berechnung der Ableitung zu verwenden.
Beispielübung N°1717 :
Vereinfache den folgenden Ausdruck `e^ln(3)+e^ln(4)`
Exponentialfunktion Funktionen 12 Klasse rechner
Das Ziel dieser korrigierten Übung ist es, die Eigenschaften der Exponentialfunktion und des neperischen Logarithmus zu nutzen, um einen algebraischen Ausdruck zu vereinfachen.
Beispielübung N°1718 :
Vereinfache den folgenden Ausdruck `e^ln(8)/e^ln(4)`
Exponentialfunktion Funktionen 12 Klasse rechner
Das Ziel dieser korrigierten Übung ist es, die Eigenschaften der Exponentialfunktion und des neperischen Logarithmus zu nutzen, um einen algebraischen Ausdruck zu vereinfachen.
Beispielübung N°1719 :
Vereinfache den folgenden Ausdruck `e^(ln(8)*ln(4))`
Exponentialfunktion Funktionen 12 Klasse
Das Ziel dieser korrigierten Übung ist es, die Eigenschaften der Exponentialfunktion und des neperischen Logarithmus zu nutzen, um einen algebraischen Ausdruck zu vereinfachen.
Beispielübung N°1731 :
Berechnen Sie die Ableitung der Funktion `e^(3+5*x^2)`
Exponentialfunktion Ableitungen von Funktionen Funktionen 12 Klasse ableitungsrechner
Das Ziel dieser korrigierten Übung ist es, die Exponentialfunktion für die Berechnung von Ableitungen zu verwenden.
Beispielübung N°1740 :
Sei f die Funktion, die durch f(x)= `3-2*x^2+x^3` definiert ist, berechne eine Stammfunktion von f, `F(x)`, mit F(x)=0.
Stammfunktionen Funktionen 12 Klasse integralrechner
Das Ziel dieser korrigierten Übung ist es, die Integrationsmethoden zu verwenden, um eine der Stammfunktionen einer Polynomfunktion zu berechnen.